Skip to main content
Log in

Empirical analysis of structural properties, macroscopic and microscopic evolution of various Facebook activity networks

  • Published:
Quality & Quantity Aims and scope Submit manuscript

Abstract

Recently, some works have been done in studying activity network as a more realistic representation of users’ behavior in online social networks. However, there is a major deficiency of a suitable definition of activity network based on a comprehensive study of various activity networks separately and combined. The main purpose of our research is to understand the differences between users’ behavior by various Facebook activities, so as to claim that these networks should not be blindly composed; neither should the result of analyzing each of them individually be generalized to others. For this purpose, degree distribution, small-world phenomenon, degree correlation, reciprocity, and homophily by different attributes of various activity networks are studied. Then, we study densification and shrinking diameter properties and some structural characteristics of activity networks over time. We also examine microscopic evolution of different activity networks. Ultimately, we conclude that there are some differences between users’ behavior by various Facebook activities but all evolve almost similarly at macroscopic and microscopic levels. However, post network evolves considerably different from other activity networks. Accordingly, a comprehensive definition for activity network is suggested so that the results of analyzing the modeled activity network fit realistic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks, In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 635–644 (2011)

  • Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separation. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 33–42 (2012)

  • Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web, pp. 519–528 (2012)

  • Baltar, F., Brunet, I.: Social research 2.0: virtual snowball sampling method using Facebook. Internet Res. 22, 57–74 (2012)

    Article  Google Scholar 

  • Catanese, S.A., De Meo, P., Ferrara, E., Fiumara, G., Provetti, A.: Crawling facebook for social network analysis purposes. In: Proceedings of the International Conference on Web Intelligence, Mining and Semantics, p. 52 (2011)

  • Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of the 18th International Conference on World Wide Web, pp. 721–730 (2009)

  • Chen, H., Beaudoin, C.E.: An empirical study of a social network site: exploring the effects of social capital and information disclosure. Telemat. Inf. 33, 432–435 (2016)

    Article  Google Scholar 

  • Chun, H., Kwak, H., Eom, Y.-H., Ahn, Y.-Y., Moon, S., Jeong, H.: Comparison of online social relations in volume vs interaction: a case study of cyworld. In: Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement, pp. 57–70 (2008)

  • Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009)

    Article  Google Scholar 

  • Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701 (2003)

    Article  Google Scholar 

  • Corbellini, A., Schiaffino, S., Godoy, D.: Intelligent analysis of user interactions in a collaborative software engineering context. In: Cipolla-Ficarra, F., Veltman, K., Verber, D., Cipolla-Ficarra, M., Kammüller, F. (eds.) Advances in New Technologies, Interactive Interfaces and Communicability, pp. 114–123. Springer (2012)

  • Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Error and attack tolerance of complex networks. Phys. A 340, 388–394 (2004)

    Article  Google Scholar 

  • Estrada, E., Hatano, N., Benzi, M.: The physics of communicability in complex networks. Phys. Rep. 514, 89–119 (2012)

    Article  Google Scholar 

  • Fagiolo, G., Squartini, T., Garlaschelli, D.: Null models of economic networks: the case of the world trade web. J. Econ. Interact. Coord. 8, 75–107 (2013)

    Article  Google Scholar 

  • Garlaschelli, D., Loffredo, M.I.: Patterns of link reciprocity in directed networks. Phys. Rev. Lett. 93, 268701 (2004)

    Article  Google Scholar 

  • Gilbert, E., Karahalios, K.: Predicting tie strength with social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 211–220 (2009)

  • Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in Facebook: a case study of unbiased sampling of osns. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9 (2010)

  • Gjoka, M., Butts, C.T., Kurant, M., Markopoulou, A.: Multigraph sampling of online social networks. IEEE J. Sel. Areas Commun. 29, 1893–1905 (2011a)

    Article  Google Scholar 

  • Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Practical recommendations on crawling online social networks. IEEE J. Sel. Areas Commun. 29, 1872–1892 (2011b)

    Article  Google Scholar 

  • Golder, S.A., Wilkinson, D.M., Huberman, B.A.: Rhythms of social interaction: messaging within a massive online network. In: Steinfield, C., Pentland, B.T., Ackerman, M., Contractor, N. (eds.) Communities and Technologies 2007, pp. 41–66. Springer (2007)

  • Hu, H., Wang, X.: Evolution of a large online social network. Phys. Lett. A 373, 1105–1110 (2009)

    Article  Google Scholar 

  • Jiang, J., Wilson, C., Wang, X., Huang, P., Sha, W., Dai, Y., et al.: Understanding latent interactions in online social networks. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 369–382 (2010)

  • Jiang, J., Wilson, C., Wang, X., Sha, W., Huang, P., Dai, Y., et al.: Understanding latent interactions in online social networks. ACM Trans. Web 7, 18 (2013)

    Article  Google Scholar 

  • Khadangi, E., Bagheri, A.: Comparing MLP, SVM and KNN for predicting trust between users in Facebook. In: 2013 3th International eConference on Computer and Knowledge Engineering (ICCKE), pp. 466–470 (2013)

  • Khadangi, E., Zarean, A., Bagheri, A., Iafarabadi, A.B.: Measuring relationship strength in online social networks based on users’ activities and profile information. In: 2013 3th International eConference on Computer and Knowledge Engineering (ICCKE), pp. 461–465 (2013)

  • Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2, 203–271 (2014)

    Article  Google Scholar 

  • Klein, A., Ahlf, H., Sharma, V.: Social activity and structural centrality in online social networks. Telemat. Inf. 32, 321–332 (2015)

    Article  Google Scholar 

  • Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 163–170 (2000)

  • Kruse, K., Sewitz, S., Babu, M.M.: A complex network framework for unbiased statistical analyses of DNA–DNA contact maps. Nucleic Acids Res. 41, 701–710 (2013)

    Article  Google Scholar 

  • Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Yu, P.S., Han, J., Faloutsos, C. (eds.) Link Mining: Models, Algorithms, and Applications, pp. 337–357. Springer (2010)

  • Kurant, M., Markopoulou, A., Thiran, P.: On the bias of bfs (breadth first search). In: 2010 22nd International Teletraffic Congress (ITC), pp. 1–8 (2010)

  • Kurant, M., Markopoulou, A., Thiran, P.: Towards unbiased BFS sampling. IEEE J. Sel. Areas Commun. 29, 1799–1809 (2011)

    Article  Google Scholar 

  • Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In: Proceedings of the 17th International Conference on World Wide Web, pp. 915–924 (2008)

  • Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187 (2005)

  • Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 462–470 (2008)

  • Lin, C.-Y., Wu, L., Wen, Z., Tong, H., Griffiths-Fisher, V., Shi, L., et al: Social network analysis in enterprise. In: Proceedings of the IEEE, vol. 100, pp. 2759–2776 (2012)

  • Macskassy, S.A.: On the study of social interactions in twitter. In: ICWSM (2012)

  • McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001)

    Article  Google Scholar 

  • Myers, S.A., Zhu, C., Leskovec, J.: Information diffusion and external influence in networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–41 (2012)

  • Nazir, A., Waagen, A., Vijayaraghavan, V.S., Chuah, C.-N., D’Souza, R.M., Krishnamurthy, B.: Beyond friendship: modeling user activity graphs on social network-based gifting applications. In: Proceedings of the 2012 ACM conference on Internet Measurement Conference, pp. 467–480 (2012)

  • Newman, M.E.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002)

    Article  Google Scholar 

  • Newman, M.E.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003)

    Article  Google Scholar 

  • Newman, M.E.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005)

    Article  Google Scholar 

  • Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006)

    Article  Google Scholar 

  • Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  • Nguyen, V.-A., Lim, E.-P., Tan, H.-H., Jiang, J., Sun, A.: Do you trust to get trust? A study of trust reciprocity behaviors and reciprocal trust prediction. In: SDM, pp. 72–83 (2010)

  • Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32, 245–251 (2010)

    Article  Google Scholar 

  • Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. Data Min. Knowl. Discov. 24, 515–554 (2012)

    Article  Google Scholar 

  • Park, S.J., Park, J.Y., Lim, Y.S., Park, H.W.: Expanding the presidential debate by tweeting: the 2012 presidential election debate in South Korea. Telemat. Inf. 33, 557–569 (2016)

    Article  Google Scholar 

  • Piraveenan, M., Chung, K.S.K., Uddin, S.: Assortativity of links in directed networks. In: Proceedings of the International Conference on Foundations of Computer Science (FCS), p. 1 (2012a)

  • Piraveenan, M., Prokopenko, M., Zomaya, A.: Assortative mixing in directed biological networks. IEEE ACM Trans. Comput. Biol. Bioinform. (TCBB) 9, 66–78 (2012b)

    Article  Google Scholar 

  • Rejaie, R., Torkjazi, M., Valafar, M., Willinger, W.: Sizing up online social networks. Netw. IEEE 24, 32–37 (2010)

    Article  Google Scholar 

  • Rezvanian, A., Meybodi, M.R.: Stochastic graph as a model for social networks. Comput. Hum. Behav. 64, 621–640 (2016a)

    Article  Google Scholar 

  • Rezvanian, A., Meybodi, M.R.: Sampling algorithms for weighted networks. Soc. Netw. Anal. Min. 6, 60 (2016b)

    Article  Google Scholar 

  • Saez-Trumper, D., Nettleton, D.F., Baeza-Yates, R.A.: High correlation between incoming and outgoing activity: a distinctive property of online social networks? In: ICWSM (2011)

  • Schiöberg, D., Schneidery, F., Schmid, S., Uhlig, S., Feldmann, A.: Evolution of directed triangle motifs in the google+osn. arXiv preprint arXiv:1502.04321 (2015)

  • Shahmohammadi, A., Khadangi, E., Bagheri, A.: Presenting new collaborative link prediction methods for activity recommendation in Facebook. Neurocomputing 210, 217–226 (2016)

    Article  Google Scholar 

  • Solé, R.V., Valverde, S.: Information theory of complex networks: on evolution and architectural constraints. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks, pp. 189–207. Springer (2004)

  • Statista. http://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/ (2015)

  • Statistic Brain. http://www.statisticbrain.com/facebook-statistics/ (2016)

  • Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph. arXiv:1111.4503 (2011)

  • Vázquez, A.: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E 67, 056104 (2003)

    Article  Google Scholar 

  • Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 37–42 (2009)

  • Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P., Zhao, B.Y.: User interactions in social networks and their implications. In: Proceedings of the 4th ACM European Conference on Computer Systems, pp. 205–218 (2009)

  • Wilson, C., Sala, A., Puttaswamy, K.P., Zhao, B.Y.: Beyond social graphs: user interactions in online social networks and their implications. ACM Trans. Web (TWEB) 6, 17 (2012)

    Google Scholar 

  • Yang, L.-X., Yang, X., Liu, J., Zhu, Q., Gan, C.: Epidemics of computer viruses: a complex-network approach. Appl. Math. Comput. 219, 8705–8717 (2013)

    Google Scholar 

  • Yao, Y., Zhou, J., Han, L., Xu, F., Lü, J.: Comparing Linkage Graph and Activity Graph of Online Social Networks. Springer, Berlin (2011)

    Book  Google Scholar 

  • Yin, D., Hong, L., Xiong, X., Davison, B.D.: Link formation analysis in microblogs. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1235–1236 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Khadangi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadangi, E., Bagheri, A. & Zarean, A. Empirical analysis of structural properties, macroscopic and microscopic evolution of various Facebook activity networks. Qual Quant 52, 249–275 (2018). https://doi.org/10.1007/s11135-016-0465-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11135-016-0465-4

Keywords

Navigation